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Abstract

We consider two coupled oscillators with negative Duffing type stiffness which are self (due to friction) and externally
(harmonically) excited. The fundamental solutions of the homoclinic orbit are constructed. Then, the Melnikov—
Gruendler approach is used to define the Melnikov’s function including smooth and stick-slip chaotic behaviour.
Theoretical considerations are supported by numerical examples.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There exist a vast research devoted to analysis of low and high dimensional systems with friction. Some
fundamental problems of non-smooth dynamical systems with friction are addressed for example, in refer-
ences (Awrejcewicz and Delfs, 1990; Awrejcewicz and Delfs, 1990; Feckan, 1999; Kunze, 2000; Lamarque
and Bastien, 2000; Pfeiffer and Hajek, 1992; Stelter, 1992). However we are not going to cite many of them,
but a reader may go through over 400 bibliography items devoted to non-smooth regular and chaotic
dynamics included in the recent monograph by Awrejcewicz and Lamarque (2003). Beginning from the pio-
neering work of Melnikov (1963), the Melnikov-like approaches spread into different branches of science.
We briefly address the Melnikov-like techniques to predict the onset of chaos in systems governed by ODEs
or maps. For example, in reference (Balasuriya et al., 2003) the Melnikov function (integral) is successfully
applied in fluid particle kinematics analysis in weakly perturbed integrable dynamical systems. The method
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proposed by Melnikov allows also to predict the onset of chaos via homoclinic (or heteroclinic) tangencies
in periodically perturbed 2D flows (see also Holmes and Mardsen, 1982; Wiggins, 1989). An existence of
transversal homoclinic orbits of systems of singularly perturbed two first order differential equations using
the exponential dichotomies is illustrated and discussed in Weiyao and Jiaowan (1999). The exponential
dichotomy and a unified geometrical approach to calculate the Melnikov vector function assuming the exis-
tence of transversal homoclinic points for high-dimensional maps with a saddle connection are studied in
Sun (1996). A splitting of separatrices for high-frequency perturbations of a planar Hamiltonian system
using the Melnikov technique is also examined (see Gelfreich, 1997). In reference Smith (1998) it is shown
that although the original Melnikov’s approach correctly estimates the parameter values for the bifurcation
and transverse intersections of separatrices and manifolds, it does not correctly approximate solutions in a
neighbourhood of the associated fixed point of the homoclinic orbit. In the latter paper a multiple scales
technique, in which inner solutions are matched with a regular outer solution, has been proposed. Finally,
we finish our brief review of recent modifications and for extensions of the Melnikov’a original work
addressing the results obtained by Fathi and Salam (1987). In the mentioned reference, an extension of
the Melnikov approach to a class of highly dissipative systems is proposed, and the obtained results are
illustrated using numerical simulations. There are several extensions of the Melnikov’s method (Holmes
and Mardsen, 1982; Sanders, 1980) however, mainly Gruendler’s work Gruendler (1985) served for us as
the basic reference to start with a construction of a homoclinic orbit in our 4D mechanical system perturbed
by friction and harmonic excitation, and then to derive the associated Melnikov’s function. It is worth
noticing that an important opened problem of the Melnikov’s approach relies on its extension into analysis
of higher order dynamical systems. This problem seems to be unsolved since it is difficult to establish a pri-
ori a homoclinic orbit associated with a highly dimensional system considered. It is needless to say that a
prediction of chaos in an analytical way in non-smooth objects modelled as systems in R* plays a crucial
role for both theoretical and applicable reasons. A key role of research carried out in this direction plays the
paper by Awrejcewicz and Holicke (1999), where a chaotic threshold for both smooth and stick-slip chaotic
behaviour in one degree-of-freedom system with friction has been obtained using directly the Melnikov’s
technique. On the other hand, it was impossible to extend directly the original Melnikov’s method devoted
to analysis of an analytic system in R. Therefore, we have applied the Gruendler extension of the Melni-
kov’s method to R*, which is further referred as the Melnikov—Gruendler approach. However, in the cited
Gruendler’s work Gruendler (1985) again an emphasis of C? systems is given. In contrary, in our research
we extend the results obtained earlier (see Awrejcewicz and Holicke, 1999) to R*. Although we do not give a
rigorous definitions and proofs of a C" vector field on R”, but we show the computations of related integrals
yielding a being sought chaotic threshold defined by the approproate Melnikov’s function. Furthermore, a
reduction of the obtained Melnikov integrals to those associated with previously considered one degree-of-
freedom mechanical system and the illustrated numerical examples indicate a validity of our approach.

2. The analysed system

The analysed mechanical object consists of two stiff bodies with the masses m coupled via nonlinear
springs in the way shown in Fig. 1.

Note that when the system is autonomous, i.e. I' = 0, the self-excited oscillations appear, which are gen-
erated by frictional characteristics. The latter ones possess a decreasing part versus a relative velocity be-
tween both bodies and the tape moving with a constant velocity w. Although this problem belongs to
classical ones and has been studied by vast number of researchers, an attempt to formulate threshold for
chaos occurence in the analytical way failed. In what follows we show how to solve this problem using
the Melnikov technique applied to our discontinuous system. It is also recommended to be familiar with
the reference Awrejcewicz and Holicke (1999), where a similar like approach has been applied to predict
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Fig. 1. The analysed system. (a) Negative stiffness system. (b) Equivalent system.

chaos in a similar like system, but with one degree-of-freedom. The analyzed system is conservative when
the friction and the excitation equals to zero. Hence, the Hamiltonian of the system (see Fig. 1) has the fol-
lowing form:

P 1

2
p 1 1- 1 2 ~ 4
H = ﬁﬁ*% 75 (X% +X§) +§k()€‘1‘ +X;) 7§k0(xl 7)C2) +4k0()€1 7)C2) . (1)
Using Hamilton equations we obtain':
Xl :p]/ma
pl = ch1 — kx? + ko(xl — Xz) — k()(xl — X2)3 —+ sIFcos(a)t) — 82T1 (pl/m — W), (2)
Xy = p,/m

j)z = kx, — l}xg — ko(x1 — X2) + l~co(x1 —X2)3 — 83T2(p2/m — W)
where the perturbation terms have been added. The friction function is defined as follows:
Ti(p;/m —w) = Tisgn(p;/m — w) — By (p;/m — w) + Bn(p;/m — W)3 3)

where w is the tape velocity, whereas B;;, Bis, Ba1, B, T1g, Too are the friction coefficients. Introducing
the following scaling

L \/Z k k k . k @
— —_— X=X — u = e =X — = _—

ma 1 k7 D1 mkza y 2 k7 P> mkz
and the following relations

ko = &k, ko= ¢k where & > 0, (5)

! The dots over variables denote differentiation with time.
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the analysed ODE:s are cast in the nondimensional form

X u 0
—x* + fi(x, eI cos(w't) — e T (u —w'
i| _[xmrt e | | areos@n —eTiw—w) | "
b4 v 0
0 Y=y = felx,) —&Th(v — W)
where
Ty(u—w) = Thysgn(u — w') — By (u — W) + By (u —w)’, (7)
Ty(u—w') = Thsgn(v —w') — By (v—w) + By(v—w )37 (8)
, 1; ; Bil ; sziZ f ];m
) T, ) B, = ) B, = ) = DR 9
\/; “off Tos \/; G e ®)

3
felxy) =<l —y) = Slx =)

Such system can be physically realized. Indeed, consider a system (see Fig. 1a) where a mass is connected
via linear springs of the same stiffness «;. Due to the symmetry we can consider only one spring. Suppose,
tha springs are initially compressed so that the mass is squeezed. Hence, when the mass is displaced there is
a repulsive force acting on it:

F(x) = 2®(x) sin a(x), (10)

where ®(x) is a linear force?:
<P(x):1c1(r0—\/a2+x2—a), &(0) = &, = Krp. (11)

For small displacements we can Taylor expand F:

2K17 KX
X —

F= .

(12)

a a

Hence, we can replace these two linear springs with one nonlinear spring (see Fig. 1b), which potential
has the form:

Kiro » K1 4

Vix) =— 12" (13)
In a similar way we can obtain the potential for two masses:
Vix)= - f 4’2235411 Kilroxz 4'22)53 o — (x —362)2 +4K_azz(x1 —X2)4~ (14)
Applying the following substitutions:
[ LA R LU . (15)
a a a

we get the same potential as in (1).

2 Of course, the spring is linear in the extension along the spring.
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3. The Melnikov-Gruendler’s approach

The method applied in the paper is due to Gruendler (1985). Although the theory is a generalization to a
non-Hamiltonian case we apply it to a Hamiltonian one. Here we consider a mechanical system governed
by the equation:

(1) = S (x(0) + h(x(1), 1, ), (16)

where f: R* — R* is a Hamiltonian vector field and /:R* x R x BCR* — R* is periodic in ¢ with frequency
o and satisfies A(x(¢),2,0) = 0. For ¢ = 0 we obtain the unperturbed system. Let the unperturbed system
possess a homoclinic orbit y(¢) to a hyperbolic point at the origin. The variational equation along y(¢) is
the following:

y(t) = Df (y(2))¥(2). (17)

We seek a fundamental solution {y"(z), @ (1),y(0),y' (1)} to Eq. (17) possessing some special
properties. The properties are the following:

(1) ¥ () =9(0)’. A

(2) The initial vectors Y)(0) span a vector space.

(3) Each y'(¢) has the exponential behaviour as r — =+ co. Namely:
Y1) ~ k™ as t — 400, k; €N,

PO (1) ~ o5 as t — —oco, kyu €N,

where ¢ is a permutation on four symbols and {4;, 15, 43,44} are the eigenvalues of Df{0).
(4) The signs of R(4;) andR(4,(;) in the exponential behaviour has to be such that:

9{(/11) >0
D(t) = { ’ 18
Vi) R(%o1)) >0, {18
R(4) >0
@) = { ’ 19
0= iz <0 (19)
R(4;) <0
) = { ’ 20
0= iz <o (20)
‘.R(i4) <0
@ (f) = ’ 21
lﬂ ( ) {9{(/1,,(4>) > 0. ( )
Next we define an index set I by i € [ if and only if 1//<i)(t) 2 50. Moreover we form the functions:
D(1) = det{y (1), y' (1), ¥ (0, (1) e h T, (22)

® It is easy to show that (¢) satisfies the Eq. (17).
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Since f'is a Hamiltonian vector field we obtain Vf'= 0. Thus the function D(¢) reduces to simpler form:

D(r) = det{y'" (1), Y (1), (' (1)} (23)

. oh(y
Let Kift, to)* denote the result of replacing y'”() in D(z) by w We define the function:
0 J

The function above measures the separation of stable and unstable manifolds. The Melnikov’s function
is defined as follows:

M(ty) = iM,-,(rO)e,, el (25)

4. The Melnikov—Gruendler’s function

Let us denote by y(¢) the homoclinic orbit of the point {0,0,0,0}. It has (in our case) the following form

q(1)
p(t) = _q;?t) ,  where ¢q(z) = 2(1%82;) sech (tM) (26)
—q(1)
The linearized system of the unperturbed equation (6) in vicinity of the homoclinic orbit y(¢) reads
0 1 0 0
J = F(6), where F() = 1+5—3(1)+ 48)q*(1) g —&+ 1025q2(t) <1) (27)
—&4+12¢4°(1) 0 1+&-3(14+49¢*() 0

Next we obtain the following equations
{s@ = (1+ & =301+ 40 (), + (1242 () — Dy, 28)
Uy = (14 &= 3(1+48g* (1) + £(12¢°(1) — iy
A combination of Eq. (28) yields
b= (1+29)(1 = 65ech’(OVT+2E) b, 61 = v — s (29)

It is easy to see that ¥ (r) = j(¢) satisfies the above equation. In order to find another solution, the
following substitution is applied: ¢(¢) — r(¢)g(¢). Since ¢(¢) is a solution to (29) one gets

7+ 204 = 0, (30)
Integrating of (30) and owing to the obtained results, the solution reads
3 1 1 . .
o, (1) = r(H)q(2) <4 Cit— 3 Cictgh(t) + 3 C; sinh(2¢) + Cz) q(1). (31)

The above solution possesses the following asymptotics ¢, (¢) X ety 1+2¢ 50 according to (19) we
obtain the next solution y?(r). Next, summing up Eq, (28) we obtain

4 This function represents the projection onto the direction of () of the ¢; of the h evaluated along (7).
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- 142¢ 2 .
b, =g(t,8)dy,  g(t,¢) =1 _6T85 sech™(tv/1+28), ¢, =y, + ;. (32)

Suppose that y(¢) is a solution of the above equation then y,(z7) = y;(—1?) is also the solution because
g(¢,&) is an even function with respect to ¢.
In our case, a perturbation term associated with (6) reads

h(t,e) = {0, 61" cos(a't) — & T (u — w'), 0, —&sTh(v — W)} (33)

Therefore, one gets’

0 0
Oh(y(1), 1+ 15,0) | T"cos(a'(t+ 1)) dh(y(1),t +10,0) | —T1(g(e) —w) (34)
681 a 0 ’ 682 a 0 ’
0 0
0 0
Oh(y(1),t +10,0) _ 0 Oh(y(1),1 +10,0) | O (35)
0¢3 o 0 ’ ey 0
~T(4(t) —w) 0
Observe that only K5;(t, 1) should be found, since 1//(2)(t) 5% 5. First K>, is found
b4 0 g
v, I’ cos(w/(t+t Vs g
Kon(t,15) = det 1 (o'( 0)) ¥ q.
Y1 0 ¥ =4
»i 0 o —q
= 2I"gcos(a (¢t + 1)) (13n — 7132) = 2032 — Piva) g cos(a'(t + 1)) (36)
Second, K5, and K,3; are found
Kt to) = =230 — 1132)qT (g — W),  Ka(t,t0) = 2132 — 3132)qT5(q — w'). (37)

Note that in each K5; we have the same term (y,3, — #,,). It can be shown that Q(&) = (y,3, — ,1»), 1.e.
this function is time-independent. Hence we obtain

K (t,19) = 2Q(E)Tq(t) cos(o'(t + 1)), (38)
Kn(t,t0) = —2Q(£)¢(O)T, (g — ), (39)
Kas(t,t0) = 2Q(E)q(1)TH(g — w'). (40)

5 For more details see Section 3.
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According to (24) we get

My (t) = —2\/51"’!2(5) L+26 sec

153 (2\/_> sin(w'ty). (41)

Mx(ty) = 2Q(E) /fo qTy(g —w')de

2007, [ gsen(a - w)dr - 2008, / q — w)dt +20(0)B, / g~y
8 , 1 +2¢ (1+
—7§Q(§)BHT85 1+2 35 ( B2( \/1+2 +89 ]2W
1 +2¢ : .
x 7 Trse V1+2E+2Q8)T, qsgn(q—w)dt. (42)
Consider the last integral in the above term:
*© _1+2
/ a(0)sen(a(0) —w)de = 1 1 Sg NIESY: / Hsen(§(r) — w)ds, (43)
. V1
where §(f) = —v/2sech(t)tgh(t) and W' = w’ T ++28F.
Assume first that W' > 1/4/2, then ¢
/ q(0)sgn(g(t) — w)dr = sgn(—fv’)/ g(r)dt = 0. (44)
Assume now that W' < 1/4/2, then
00 N | oo
/ gsgn(q — w)de = —/ E[dt—i—/ gdt — / gdt = 2v/2(sech(t,) — sech(t;)) (45)
—0 —00 1 5]
where
1 —— 1 1 m——
t1:1n<~—, 1+ 1—2171/2(1— E E 1—2 >>,
W
wmin (1= Vim (1 Vi) ).
w

Substituting the obtained result we find

i — _% / / W/2 M
4(1+26)3/2M22(t0) - 39(5)311—’_2‘9(6)B12< +35(1+8§)>
Q(&)T, V20 <%— w’) (sech(t,) — sech(ty)), (46)

where 0(x) is Heaviside’s function. In the similar way we obtain function M>s3(#y). Finally, we find Melni-
kov—Gruendler function
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oy
M(ty) = —V2I'no'sech | ———— | sin(w't
(W) (57255 ) sinta'o)
4(1 + 25) / / 1 + 25 / / 2 4(1 + 25)5/2
————<(B,, — B 4,/——(B}, — B _
3 1+8§( 11 o)+ 1+85( 12 )| W +35(1+8(§)
1 - 1 +2¢&
+2V2(T, — T 0(——w’>—secht —sech(t;)). 47
(T — T) 7 1+8§( (t2) (t1) (47)
1
0.8
]"/ 0.6
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Fig. 2. The threshold curve.
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Fig. 3. I'"=0.98, w' =0.1.



5678 J. Awrejcewicz, D. Sendkowski | International Journal of Solids and Structures 42 (2005) 5669-5682
5. Numerical results

It is clear that having analytical form of the Melnikov’s function various control parameters can be taken
to show regular and/or chaotic dynamics. Let us take, following the paper (Awrejcewicz and Holicke,
1999), two of them i.e. {I"",w’} (see Fig. 2). The obtained curves define a chaotic threshold. Namely, above
the mentioned curves chaos is expected, whereas below a regular behaviour is expected. The cusp corre-
sponds to a switch between smooth and stick-slip dynamics. Note that the switch takes place exactly for
the tape velocity value w = (1 + 2¢)/(v/2y/T + 8&). One may state the following question. Why additional

1,04
0,54
0,04
-0,5

-1,0

-1.8 T T T T T T T T 1 0.0 T T T T T T T

0,20
0,15 4
0,15
0,10 4
0,10

0,05 0,05+
> 0,00

-0,05

-0,10 -

0,20 . . . . . . -0,15

0.4 T T T T

0.3 -

0.2 =

Power

0.1+ -

|, 1'”

00 \'m A o bl ww,mww»“N““‘MM(‘
- ; 7 ; ;

0.0 0.1 0.2 03 04 0.5

Frequency (Hz)

Fig. 4. I'" =1.02, w' =0.1.
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numerical examples are added having the analytical construction of the Melnikov’s function. Some of the
reasons are given below:

(i) It may happen that the obtained chaotic set is unstable, and hence it is impossible to show it applying
a standard initial value problem.
(i1) Numerical tests allow for estimation of validity of our perturbational approach.
(iii) Numerical simulations can verify smooth and stick-slip chaotic dynamics. Note that in general
approach given in reference (Gruendler, 1985), the introduced main theorem works only for C?
systems.

- 0.2 4
0.02 | ‘ —
‘ J | L' m "‘mw s [ |
ol i it RO
(a) 0.0 0.1 O.FZrequency (H:;l 04 0.5

Fig. 5. (a) I' = 1.1, w' = 0.1 (b) I" = 0.4, w' = 0.5 and (c) I" = 0.7, w' = 0.5.
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Fig. 5 (continued)

In our numerical simulations we have taken T;9 = 0.45, T,,=0.05, B;; =0.25, B,; =0.15, B, =0.2,
B>, =0.1, £ =0.1. The results are presented in the form of phase portraits (x,y), (y,v), Poincaré maps
and power spectra (FFT) which correspond to the first block and the second one respectively. For
{I'"=0.98, w =0.1} we obtain periodic orbits (see Fig. 3). Observe that in these figures there are cusps
which correspond to a sign change of the relative velocity. Moreover there are horizontal parts correspond-
ing to the stick phases during the motion. While we cross the threshold curve we arrive at the point
{I'"=1.02, w’ = 0.1}, where qualitatively different behavior is observed (see Fig. 4). We can still observe
stick phases during the motion (especially in (y,v) Poincaré section) and many cusps. Increasing I'" to
1.1 chaotic behaviour is observed (see Fig. 5).

6. Concluding remarks

In this paper an important problem related to stick-slip chaos prediction is successfully solved. It pos-
sesses a challenging impact on analysis of all mechanical systems with friction, since many of them can
be modelled by two degrees-of-freedom objects (Awrejcewicz and Lamarque, 2003). Motivated mainly
by two papers (Awrejcewicz and Holicke, 1999; Gruendler, 1985), the homoclinic orbit is defined analyti-
cally, and then the Melnikov—Grunedler method is applied. The Melnikov’s integrals are computed for both
qualitatively different cases i.e. for regular and discontinous onset of chaos and the analytical prediction of
chaotic threshold is verified by numerical computations.
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Fig. 5 (continued)
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